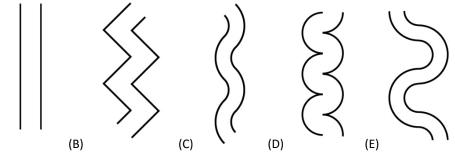
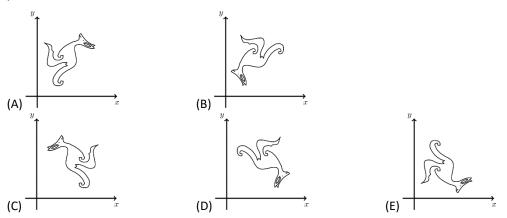
Känguru der Mathematik 2016 Level Student (from grade 11) Österreich – 17.03.2016

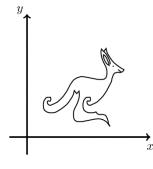
- 3 Point Questions

1. The sum of the ages of Tom and Johann is 23. The sum of the ages of Johann and Alex is 24 and the sum of the ages of Alex and Tom is 25. How old is the oldest of them?


(A) 10	(B) 11	(C) 12	(D) 13	(E) 14
The sum $\frac{1}{10} + \frac{1}{10}$	$\frac{1}{100} + \frac{1}{1000}$ gives			

2.

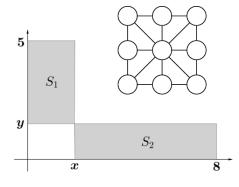

(A)


(A) $\frac{3}{111}$ (B) $\frac{111}{1110}$ (C) $\frac{111}{1000}$ (D) $\frac{3}{1000}$ (E) $\frac{3}{1110}$

3. Maria wants to build a bridge across a river. This river has the special feature that from each point along one shore the shortest possible bridge to the other shore has always got the same length. Which of the following diagrams is definitely not a sketch of this river?

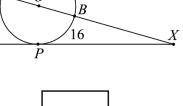
- **4.** How many whole numbers are bigger than 2015×2017 but smaller than 2016×2016 ?
 - (A) 0 (B) 1 (C) 2015 (D) 2016 (E) 2017
- **5.** A scatter diagram on the *xy*-plane gives the picture of a kangaroo as shown on the right. Now the *x*- and the *y*-coordinate are swapped around for every point. What does the resulting picture look like?

6. What is the minimum number of planes necessary to border a certain region in a three-dimensional space?


(E) 8

7. Diana wants to write whole numbers into each circle in the diagram, so that for all eight small triangles the sum of the three numbers in the corners is always the same. What is the maximum amount of different numbers she can use?

(A) 1 (B) 2 (C) 3 (D) 5


8. The rectangles S_1 and S_2 shown in the picture have the same area. Determine the ratio x: y.

(A) 1:1 (B) 3:2 (C) 4:3 (D) 7:4 (E) 8:5
9. If
$$x^2 - 4x + 2 = 0$$
 then $x + \frac{2}{x}$ equals
(A) -4 (B) -2 (C) 0 (D) 2 (E) 4

angle ∠AX	ΥP ?	U		P has length 10			20	O B	_
(A) 30°	(B) 2	4°	(C) 18°	(D) 15	5°	(E) 10°	20	16	
		-	4 Point Q	uestions -				Р	
true.			nbers for wh , <i>c</i> and <i>d</i> is t		$-2 = c \times$	$2 = d \div 2$ holds]
(A) a	(B) <i>b</i>	(C) <i>c</i>	(D) <i>d</i>	(E) It is not u	niquely de	fined.			
two numb	ers in the ce	lls immed	diately unde	igher cell is equ rneath that nu omost cell, if th	mber. Whi		old natural nu	umbers greater	than 1
(A) 56	(B) 8	4	(C) 90	(D) 10	05	(E) 220			
13. Which valu	ue does x_4 t	ake if x_1 :	$= 2$ and x_{n+1}	$x_1 = x_n^{x_n}$ for n	$a \ge 1?$				
(A) 2 ^{2³}	(B) 2	2 ⁴	(C) 2 ²¹¹	(D) 2 ²	216	(E) 2 ²⁷⁶⁸			
-	e <i>ABCD</i> the How big is			alf as long as th	ie diagona	\overline{AC} . Let X be the	e point on \overline{CD}	for which $ \overline{AX} $	$ = \overline{XC} $
(A) 12.5°	(B) 1	5°	(C) 27.5°	° (D) 42	2.5°	(E) another ang	le		
	For how mai			-		le lengths of the r ectangles are said	-		
(A) 2	(B) 4		(C) 6	(D) 8		(E) O		\wedge	
16. The square	e shown in t	he diagra	m has a peri	imeter of 4. Th	e perimete	er of the equilater	al triangle is	Λ	\backslash
(A) 4	(B) 3 + v	3	(C) 3	(D) $3 + \sqrt{2}$	(E)	$4 + \sqrt{3}$			
(who alway	ys lies). On y	our jourr	ney on the is	land you meet	7 people	nly tells the truth who are sitting in ınd the bonfire?	•	d a bonfire. The	ey all tell
(A) 3 (E	3) 4 (C) 5	5 (D) 6	6 (E) Mo	re information	is necessa	ry to make a deci	sion.		
	-		-	ne digits 1 to 9 e three numbe		ch of the nine digi	ts is used exa	ctly once. Whic	h of the
(A) 1500	(B) 1	503	(C) 1512	(D) 15	521	(E) 1575		7	२
that the su the sum of	im of the nu the numbe its are alrea	mbers in rs in the o	the corner point	points of each v s of each black	white triar triangle is	ibers 0, 1 or 2. It i gle is divisible by not divisible by 3 ch numbers can th	3, while . Three	0	
(A) only 0	(B) only	1 (C)	only 2 (I	D) only 0 and 1	(E) eit	her 0 or 1 or 2		$\overset{\circ}{\overset{\circ}{}}$	-0
at point A . diagram is		s that the o scale!)				e tangent to the c big. (Note that the			C C
(1) 66°	(D) 7	0 5 0	(C) 72°	(D) 7	E °	(E) 77 E°		x	`

(E) 77.5° (A) 66° (B) 70.5° (C) 72° (D) 75°

2 Ь E

ZI. HOW many dif	ferent real solution	ons does the follow	ing equation have	2?
		$(x^2 - 4)$	$(x+5)^{x^2+x-30}$	= 1 ?
(A) 1	(B) 2	(C) 3	(D) 4	(E) infinitely many
				eral are tangents to the circle). The ratio of the perimeter io of the area of the quadrilateral to that of the circle is
(A) 4: <i>π</i>	(B) 3√2: <i>π</i>	(C) 16:9	(D) π: 3	(E) 4: 3
23. How many qu the marked po		$y = ax^2 + bx + c$	(with $a \neq 0$) hav	re graphs that go through at least 3 of
(A) 6	(B) 15	(C) 19	(D) 22	(E) 27
		$\mathcal L$ (with the right and $\sqrt{8}$. What is the		e bisectors of the acute angles intersect at point P. The <i>A</i> ?
(A) 8	(B) 3	(C) $\sqrt{10}$	(D) $\sqrt{12}$	(E) 4
-				eal solutions. It is known that the sum of the squares of s of the solutions of the second equation and that $a eq b$
(A) 0	(B) -2	(C) 4	(D) -4	(E) The sum cannot be uniquely determined.
				pping) pyramids. Each pyramid has one face of the cube as Is are 2, 5, 10, 11 and 14. What is the volume of the sixth
(A) 1	(B) 4	(C) 6	(D) 9	(E) 12
white on one vertex <i>B</i> coinc	side and grey on t cides with M the r cides with N the r	nidpoint of the edg	folds the strip as ge <i>CD</i> . Then she f	shown so that the A N
(A) 50 cm²	(B) 60 cm ²	(C) 62.5 cm ²	(D) 100 cm ²	(E) 125 cm ²
from 1 to <i>n</i> . A		divides this sum bu		of all positive whole numbers nmands. Which of the following B'
(A) 217	(B) 221	(C) 229	(D) 245	(E) 269 C
	-	t is split up into 25 owed to change th	e colour of three	
that are adjac and black one	ent in a horizonta s turn white). Wh	l or vertical line (i.e at is the smallest n rd colouring showr	umber of moves	n black

5 Point Questions -

30. The positive whole number N has exactly six different (positive) factors including 1 and N. The product of five of these factors is 648. Which of these numbers is the sixth factor of N?

(A) 4 (B) 8 (C) 9 (D) 12 (E) 24